Conic Relaxations for Power System State Estimation with Line Measurements
نویسندگان
چکیده
This paper deals with the non-convex power system state estimation (PSSE) problem, which plays a central role in the monitoring and operation of electric power networks. Given a set of noisy measurements, PSSE aims at estimating the vector of complex voltages at all buses of the network. This is a challenging task due to the inherent nonlinearity of power flows, for which existing methods lack guaranteed convergence and theoretical analysis. Motivating by these limitations, we propose a novel convexification framework for the PSSE using semidefinite programming (SDP) and second-order cone programming (SOCP) relaxations. We first study a related power flow (PF) problem as the noiseless counterpart, which is cast as a constrained minimization program by adding a suitably designed objective function. We study the performance of the proposed framework in the case where the set of measurements includes: (i) nodal voltage magnitudes, and (ii) branch active power flows over a spanning tree of the network. It is shown that the SDP and SOCP relaxations both recover the true PF solution as long as the voltage angle difference across each line of the network is not too large (e.g., less than 90◦ for lossless networks). By capitalizing on this result, penalized SDP and SOCP problems are designed to solve the PSSE, where a penalty based on the weighted least absolute value is incorporated for fitting noisy measurements with possible bad data. Strong theoretical results are derived to quantify the optimal solution of the penalized SDP problem, which is shown to possess a dominant rank-one component formed by lifting the true voltage vector. An upper bound on the estimation error is also derived as a function of the noise power, which decreases exponentially fast as the number of measurements increases. Numerical results on benchmark systems, including a 9241-bus European system, are reported to corroborate the merits of the proposed convexification framework.
منابع مشابه
On Line Electric Power Systems State Estimation Using Kalman Filtering (RESEARCH NOTE)
In this paper principles of extended Kalman filtering theory is developed and applied to simulated on-line electric power systems state estimation in order to trace the operating condition changes through the redundant and noisy measurements. Test results on IEEE 14 - bus test system are included. Three case systems are tried; through the comparing of their results, it is concluded that the pro...
متن کاملResilient Configuration of Distribution System versus False Data Injection Attacks Against State Estimation
State estimation is used in power systems to estimate grid variables based on meter measurements. Unfortunately, power grids are vulnerable to cyber-attacks. Reducing cyber-attacks against state estimation is necessary to ensure power system safe and reliable operation. False data injection (FDI) is a type of cyber-attack that tampers with measurements. This paper proposes network reconfigurati...
متن کاملError Modeling in Distribution Network State Estimation Using RBF-Based Artificial Neural Network
State estimation is essential to access observable network models for online monitoring and analyzing of power systems. Due to the integration of distributed energy resources and new technologies, state estimation in distribution systems would be necessary. However, accurate input data are essential for an accurate estimation along with knowledge on the possible correlation between the real and...
متن کاملMulti-Area State Estimation Based on PMU Measurements in Distribution Networks
State estimation in the energy management center of active distribution networks has attracted many attentions. Considering an increase in complexity and real-time management of active distribution networks and knowing the network information at each time instant are necessary. This article presents a two-step multi-area state estimation method in balanced active distribution networks. The prop...
متن کاملEstimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study
One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...
متن کامل